Can I hatch this region in any way?












6














Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here










share|improve this question
























  • For what purpose?
    – Alex Trounev
    10 hours ago
















6














Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here










share|improve this question
























  • For what purpose?
    – Alex Trounev
    10 hours ago














6












6








6







Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here










share|improve this question















Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here







graphics






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 10 hours ago

























asked 10 hours ago









LCarvalho

5,61242885




5,61242885












  • For what purpose?
    – Alex Trounev
    10 hours ago


















  • For what purpose?
    – Alex Trounev
    10 hours ago
















For what purpose?
– Alex Trounev
10 hours ago




For what purpose?
– Alex Trounev
10 hours ago










3 Answers
3






active

oldest

votes


















11














reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N[Area[reg]]



52.3599




Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
BoundaryStyle -> Red]]


enter image description here



RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]



same picture







share|improve this answer































    4














    poly = MeshPrimitives[
    BoundaryDiscretizeRegion[
    RegionIntersection[
    Disk,
    HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
    HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
    ],
    MaxCellMeasure -> {1 -> 0.001}
    ],
    2
    ][[1]];
    Area[poly]



    0.523599




    Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


    enter image description here






    share|improve this answer





























      3














         Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
      Circle[{0, 0}, 10, {π/6, π/3}],
      Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
      Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
      10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


      enter image description here



      Therefore we can use the following.



      reg1 = Disk[{0, 0}, 10];
      reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
      reg=RegionIntersection[reg1, reg2];
      Area@reg



      $frac{50 pi }{3}$




      Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
      Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


      enter image description here



      You can also choose reg2 as



      reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


      Or



      reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





      share|improve this answer























        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "387"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188788%2fcan-i-hatch-this-region-in-any-way%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        11














        reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
        N[Area[reg]]



        52.3599




        Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
        RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
        Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
        BoundaryStyle -> Red]]


        enter image description here



        RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
        MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
        MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
        PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
        Frame -> False]



        same picture







        share|improve this answer




























          11














          reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
          N[Area[reg]]



          52.3599




          Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
          RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
          Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
          BoundaryStyle -> Red]]


          enter image description here



          RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
          MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
          MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
          PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
          Frame -> False]



          same picture







          share|improve this answer


























            11












            11








            11






            reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
            N[Area[reg]]



            52.3599




            Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
            RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
            Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
            BoundaryStyle -> Red]]


            enter image description here



            RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
            MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
            MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
            PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
            Frame -> False]



            same picture







            share|improve this answer














            reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
            N[Area[reg]]



            52.3599




            Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
            RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
            Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
            BoundaryStyle -> Red]]


            enter image description here



            RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
            MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
            MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
            PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
            Frame -> False]



            same picture








            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 5 hours ago

























            answered 9 hours ago









            kglr

            177k9198406




            177k9198406























                4














                poly = MeshPrimitives[
                BoundaryDiscretizeRegion[
                RegionIntersection[
                Disk,
                HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                ],
                MaxCellMeasure -> {1 -> 0.001}
                ],
                2
                ][[1]];
                Area[poly]



                0.523599




                Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                enter image description here






                share|improve this answer


























                  4














                  poly = MeshPrimitives[
                  BoundaryDiscretizeRegion[
                  RegionIntersection[
                  Disk,
                  HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                  HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                  ],
                  MaxCellMeasure -> {1 -> 0.001}
                  ],
                  2
                  ][[1]];
                  Area[poly]



                  0.523599




                  Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                  enter image description here






                  share|improve this answer
























                    4












                    4








                    4






                    poly = MeshPrimitives[
                    BoundaryDiscretizeRegion[
                    RegionIntersection[
                    Disk,
                    HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                    HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                    ],
                    MaxCellMeasure -> {1 -> 0.001}
                    ],
                    2
                    ][[1]];
                    Area[poly]



                    0.523599




                    Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                    enter image description here






                    share|improve this answer












                    poly = MeshPrimitives[
                    BoundaryDiscretizeRegion[
                    RegionIntersection[
                    Disk,
                    HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                    HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                    ],
                    MaxCellMeasure -> {1 -> 0.001}
                    ],
                    2
                    ][[1]];
                    Area[poly]



                    0.523599




                    Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                    enter image description here







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 9 hours ago









                    Henrik Schumacher

                    49k467139




                    49k467139























                        3














                           Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                        Circle[{0, 0}, 10, {π/6, π/3}],
                        Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                        Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                        10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                        enter image description here



                        Therefore we can use the following.



                        reg1 = Disk[{0, 0}, 10];
                        reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                        reg=RegionIntersection[reg1, reg2];
                        Area@reg



                        $frac{50 pi }{3}$




                        Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                        Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                        enter image description here



                        You can also choose reg2 as



                        reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                        Or



                        reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





                        share|improve this answer




























                          3














                             Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                          Circle[{0, 0}, 10, {π/6, π/3}],
                          Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                          Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                          10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                          enter image description here



                          Therefore we can use the following.



                          reg1 = Disk[{0, 0}, 10];
                          reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                          reg=RegionIntersection[reg1, reg2];
                          Area@reg



                          $frac{50 pi }{3}$




                          Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                          Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                          enter image description here



                          You can also choose reg2 as



                          reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                          Or



                          reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





                          share|improve this answer


























                            3












                            3








                            3






                               Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                            Circle[{0, 0}, 10, {π/6, π/3}],
                            Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                            Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                            10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                            enter image description here



                            Therefore we can use the following.



                            reg1 = Disk[{0, 0}, 10];
                            reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                            reg=RegionIntersection[reg1, reg2];
                            Area@reg



                            $frac{50 pi }{3}$




                            Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                            Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                            enter image description here



                            You can also choose reg2 as



                            reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                            Or



                            reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





                            share|improve this answer














                               Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                            Circle[{0, 0}, 10, {π/6, π/3}],
                            Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                            Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                            10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                            enter image description here



                            Therefore we can use the following.



                            reg1 = Disk[{0, 0}, 10];
                            reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                            reg=RegionIntersection[reg1, reg2];
                            Area@reg



                            $frac{50 pi }{3}$




                            Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                            Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                            enter image description here



                            You can also choose reg2 as



                            reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                            Or



                            reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];






                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited 45 mins ago

























                            answered 8 hours ago









                            Okkes Dulgerci

                            4,0851816




                            4,0851816






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematica Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188788%2fcan-i-hatch-this-region-in-any-way%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                CARDNET

                                Boot-repair Failure: Unable to locate package grub-common:i386

                                濃尾地震